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Abstract-A numerical investigation of natural-convection-dominated melting process of ice from a vertical 
wall of a square enclosure is reported. Time-dependent sinusoidal temperature perturbation is imposed on 
the vertical hot wall of the enclosure, and its effects on the heat transfer and buoyancy-driven flow during 
the melting process of ice are examined. For all the simulations conducted in the present study, a steady 
periodic melting regime at a frequency of the imposed time-periodic temperature perturbation emerges 
following a period of transient oscillatory melting process. The synchronous response of the melting process 
of ice to the imposed time-periodic perturbation on the hot wall temperature is found to be strongly affected 
by the density inversion phenomenon of water. Parametric simulations have been performed to unveil the 
effects of the relevant parameters on the heat transfer characteristics during the steady periodic melting 
regime of ice inside the enclosure. Results clearly demonstrate the feasibility of controlling the melting heat 
transfer in an ice-filled enclosure by means of the tome-~riodic ~rturbation of the wall temperature in 

conjunction with the density inversion phenomenon of water near 4°C. 

INTRODUCTION 

IN VIEW of its fundamental importance in a wide range 
of technological applications as well as the naturally 
occurring phenomena, the heat transfer problem of 
melting of a phase change material (PCM) from a 
vertical hot wall inside a rectangular enclosure has 
been investigated extensively as revealed in the litera- 
ture reviews given by Viskanta [l-3]. As demonstrated 
in previous works 14-81, knowledge of buoyancy- 
driven flow in the melt region is vital for making 
an accurate description of the melting heat transfer 
process from a vertical wall of isothermal temperature 
or constant heat flux. It can be further noted that 
the thermal boundary conditions of the hot vertical 
surface considered in the early literature of the natu- 
ral-convection-dominated melting problem are time- 
independent isothermal or constant-heat-flux, with 
the exception of our recent study [9] in which numeri- 
cal simulations have been performed for melting pro- 
cess of a pure metal (tin) from an isothe~ally heated 
vertical wall subjected to a time-periodic temperature 
perturbation inside a vertical square enclosure. A 
steady periodic melting behavior with a frequency 
equal to that of the imposed time-periodic perturbation 
on the hot wall temperatures arises following a period 
of transient oscillatory melting process. The steady 
periodic mean values of the heat transfer rates as well 
as the melted fraction are approximately equal to 
those under a static wall temperature at the mean 
value of the sinusoidal perturbation ; and they are 

t To whom correspondence should be addressed. 

strongly affected by the Rayleigh number and the 
subcooling parameter, but rather insensitive to the 
oscillation amplitude or the time period of the 
imposed surface temperature perturbation. The pre- 
sent work is an extension of the earlier study [9]. A 
physical configuration identical to the previous work 
[9] but filled with ice as the solid PCM is considered 
here, representing our continuing effort to explore the 
influence of cyclic temporal temperature ~rturbation 
of the heated wall on the natural-convection-domi- 
nated melting process in a vertical enclosure. More- 
over, to further improve the computational efficiency, 
a numerical algorithm different from that used in the 
earlier study [9] has been devised. 

For the melting process of ice from a vertical surface 
inside a rectangular enclosure as illustrated schemat- 
ically in Fig. 1, it is rather surprising to find from 
the literature survey that little or no previous study 
dealing with this configuration exists; the existing 
literature concerning heat transfer during the melting 
process of ice in a confined space appears to be mostly 
restricted to the geometry of a cylinder or cylind~cal 
annulus as indicated by the representative works [lO- 
141. These studies were primarily motivated by the 
feasible applications of ice thermal storage techniques 
for the air-conditioning of large buildings. It has been 
established that the density anomaly of water in the 
vicinity of the melting point of ice can exert strong 
influence on the heat transfer characteristics during the 
melting process of ice in enclosures. All these studies 
were focused on the melting process of ice under time- 
independent thermal boundary conditions. However, 
in practical applications the boundary conditions may 
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amplitude of oscillatory surface 
temperature 
dimensionless amplitude of oscillatory 
surface temperature, a/(Fh - 7;.) 
oscillatory amphtude of Q, 
oscillatory amplitude of Qh 
oscillatory amplitude of V* 
aspect ratio, W/H 

exponent of density equation 
specific heat 
frequency 
dimensionless frequency, f + H ‘/cq 

Fourier number, LX, t/H2 

gravitational acceleration 
height of enclosure 
thermal conductivity 
latent heat 
dimensionless time period, l/j 
Prandtl number, v&r 
average heat flux at vertical wall 
dimensionless heat transfer rate 
density inversion parameter, 
(T, - Tr)/( 2+h - Tr) = Stem/Be 

Rayleigh number, 

9 r.sA Th - ~rl”H3/(~~vJ 
coefficient of density equation 
dimensionless position of solid-liquid 
interface 

SC subcooling factor, (Tr - 7’,)/( T, - Tr) 
Ste Stefan number, L.,,~(F,, - T,)/L 

Ste, reference Stefan number, cP,,fTm - rf)/L 
t time 
T temperature 

NOMENCLATURE 

V,, volume of liquid PCM 

Vi3 total volume of PCM 
v* volumetric fraction of liquid PCM, 

v,l VO 
W width of enclosure 
_\+, f’+ Cartesian coordinates 
X, y dimensionless coordinates, x+/H, y+/H. 

Greek symbols 
CX thermal diffusivity, k/(pc,) 
0 dimensionless temperature, 

V- T,)l(~, - Tr) 
v kinematic viscosity 

5 dummy variable 

P density 

z+ 

steam function 
dimensionless stream function, 

$+I% 
W+ vorticjty 
W dimensionless vorticity, w+ H ‘jq. 

Subscripts 
C cold surface 
f fusion point 
h hot surface 
1 liquid phase 
m maximum density 
S solid phase. 

Superscripts 
* ratio of quantity for solid to that for 

liquid phase 
~ average vaiue. 

not be fixed in time. Moreover, the influence of time- 
dependent boundary condition is of interest in con- 
nection with the feasibility and means of controlling 
heat transfer through boundary perturbations. There- 

T,(r)=T,,+asin(Zx. f’r 

FIG. I. Schematic diagram of physical configuration and 
coordinate system. 

fore, the primary objective of the present study is to 
investigate via a finite difference simulation the heat 
transfer characteristics of the natural-convection- 
dominated melting process of ice from a vertical wall 
modulated with time-dependent sinusoidal surface 
temperature within a square enclosure, thereby 
exploring the feasibility of controlling the melting heat 
transfer in an ice-filled enclosure by means of time- 
periodic perturbation of the wall temperature. 

PROBLEM STATEMENT AND 

MATHEMATICAL FORMULATION 

The two-dimensional melting process from a ver- 
tical wall with time-dependent sinusoidal surface tem- 
perature inside an enclosure as depicted in Fig. 1 is 
identical to that considered in ref. [9] except that 
ice is the solid PCM. There is thus no need to repeat 
the detailed problem statement and the physical 
assumptions here. In short, the dimensionless govern- 
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ing differential equations for the melting process con- 
sidered can be expressed in terms of stream function, 
vorticity, and temperature as follows : 

In the water region : 

allraw 3~ I a*aa 
aFo ay ax ax i+ 

= PrV’r3-t Pr Ra- d’@;xR’b (1) 

V’tl, = --co (2) 

(3) 

In the ice region : 

ae 
-I= 

aF0 
LZ*V%. 

Here the nonlinear density-temperature relation of 
water is described using the correlation proposed by 
Gebhart and Mollendorf [ I.51 of the form 

p = &(I -vsp]T- T,lh) (5) 

where p,(= 999.972 kg mm3) is the maximum density, 
rsp = 9.297173 x 10e6 f”C)-‘, T,,, = 4.0293”C and 
b = 1.8948 16. The dimensionless initial/boundary 
conditions for the present problem are : 

atFo=O; $=w=O, B=-SC, and (6) 

forFo>O; 

y=Oandl, O<.X<AA~; $=g=O (7a) 

x=0, O<ybl; $f=O,U=l+Asin E 
( > P 

f7b) 

x=Ar, O<.y,< 1; f3= -SC. (7c) 

At the solid-liquid interface, the continuity of tem- 
perature and the ener.gy balance lead to 

0’4 

SOLUTION METHODOLOGY 

The mode1 equations of the problem were solved 
numerically using a finite difference method. The 
spatial derivatives were discretized employing the 
second-order central ditferencing scheme except for 
the convective terms for which the second-upwind 
scheme [16] was adopted. The temporal derivatives were 
approximated by means of the forward differencing. 
In order to improve computational efficiency in solv- 
ing the phase change problem under consideration, a 
solution methodology somewhat different from the 
enthalpy formulation used in the previous work [9] 
was devised. In general, the solution methodology for 

solving the solid-liquid phase change problem can be 
classified into two approaches : the fixed grid 19, 17, 
181 and the transformed grid [5-7, 12, 131 methods. 
The former is used in the enthalpy formulation, in 
which a fixed grid is laid over the entire PCM domain 
and the latent heat release/absorption at the interface 
is accounted for by introducing a source term in the 
energy equation ; while the latter is primarily adopted 
for the one immobilizing the moving interface via a 
suitable coordinate transformation and then solving 
for temperature distributions in the solid and liquid 
regions, separately. The solution methodoIogy de- 
veloped in the present work can be viewed some- 
what as a hybrid algorithm of these two approaches; 
namely, the temperature field is solved separately for 
the solid and liquid regions but on a fixed grid over 
the entire PCM domain. The solution procedure is 
based on the quasi-stationary approximation [S] in 
which the location of the moving solid-liquid interface 
is explicitly determined using the energy balance equa- 
tion, equation (7d). Similar to the transformed grid 
method, an initial position of the solid-liquid inter- 
face is prerequisite to initiate the present solution 
procedure. To this end, the initial position of the 
phase-change front is determined by incorporating the 
enthalpy formulation as that employed in refs. 19, 17, 
IS] for the first time step of the simulation. This is 
different from that commonly adopted in the trans- 
formed grid approach [5-8, 12, 131 using an estimated 
initial melt thickness. With the obtained initial melt 
thickness, the solution procedure then proceeds simi- 
lar to that of the transformed grid approach but on a 
fixed grid system. The spatial discretization of the 
differential equations for the grids adjacent to the 
solid-liquid interface was carried out by means of 
suitable polynomial interpolation fl9) ; and the 
boundary treatments for the buoyant flow cal- 
culations at the interface fotlowed those described in 
refs. [17, IS]. At each time step, the flow field in the 
liquid region as well as the temperature distributions 
in both solid and liquid regions were calculated 
implicitly through a line relaxation scheme. The iter- 
ation was continued until a relative convergence 
criteria of 10-j was met by all the field variables of 
the problem. 

The above-elaborated solution methodology was 
validated by performing calculations for the problem 
of melting of pure tin from a time-independent iso- 
thermal vertical surface in a shallow enclosure; and 
as shown in Fig. 2, comparisons were made with the 
data available in refs. [20, 211 and the results form 
our earlier study [9] as well. A favorable agreement 
between the results from the present algorithm and 
those of refs. [9, 201 can be readily observed in 
Fig. 2, lending validation for the solution algorithm 
developed in this study. In addition, in terms of the 
computational efficiency. the calculation for this case 
using the present solution algorithm required less 
than half of the CPU time consumed by the enthalpy 
formulation adopted in ref. [9]. Furthermore, the vali- 
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FIG. 2. Comparison of the predicted melting fronts of pure 
tin in a rectangular cavity with the existing data. 

dation calculations using the present algorithm have 

also been performed for the problem of freezing of 
water inside a rectangular cavity considered in ref. 
[22]. In comparison of the isotherm distributions 

obtained with that provided in ref. [22] (not shown 
here), a reasonable agreement was obtained, con- 
firming the validity of the present algorithm in solving 
the natural-convection-dominated phase change 
problem in the presence of density anomaly. 

A series of preliminary calculations for the grid-size 
study has been carried out as exemplified in Fig. 3 

displaying the convergence of the extreme values of 
the stream function with the grid size during a melting 
process of ice. Two uniform grid systems were used 
for the calculations, mainly depending on the Stefan 
number: 41 x41 for Stc = 0.051 and 51 x 51 for 
Sir = 0.101. Also shown in Fig. 3 are the results for 
the convergence test of varying time step ; and a time 
step of I .25 x IO -’ was used for the calculations except 
thr the cases of it = 0.25 where a smaller time step of 
6.25 x IO me was found to be appropriate. 

RESULTS AND DISCUSSION 

Numerical simulations were carried out for the 
melting process of ice in a square enclosure (Ar = I) 

40 

0 

-40 

------ 61x61 
--- -60 51x51 ste=o.101 

- 51x51 
oeeeo 51x51 

Fro. 3. Convergence tests of the extreme values of stream 
function with grid-size and time-step. 

with a time-dependent sinusoidal hot wall tcm- 
perature having the relevant dimensionless par- 
ameters in the following ranges: the Stefan number 
Stc = 0.051 (T,, = 4°C) and 0.101 (?‘,, = 8 C), the 
subcooling parameter Sc = 0.25-I .5, the Raylcigh 
number Ra = 104--IO”, the dimensionless time period 
of the wall temperature oscillation p = O.25-.2.0. and 
the dimensionless amplitude of the wall temperature 
oscillation ,4 = O-I .O. Typically, more than six hours 
of CPU time on VAX-9420 computer were necessary 
for a simulation to reach a fully developed steady 
periodic melting regime of ice in the enclosure. 

Similar to the findings in ref. [9] for pure tin as the 

PCM, in all the calculations conducted in the present 
work, a steady periodic melting regime of ice under 

the time-periodic hot-surface temperature perturb- 
ation emerges after an initial oscillatory melting 
process. During the steady periodic melting regime. 
the melted fraction of ice as well as the heat transfer 
rates through the thermally active wall of the enclos- 
ure exhibits a synchronous response to the imposed 
time-periodic perturbation of the surface temperature. 
The presentation of the present results will primarily 
focus on the ~d~dmetric effects of A, p, /?a and SC 
under two diKerent values of Str on the heat transfer 
characteristics as well as the melted fraction during 
the steady periodic melting regime of ice inside the 
enclosure. 

The synchronous response of the melting process of 

ice to varying amplitude of the hot-wall temperature 
oscillation is found to be a strong function of the 
Stefan number, namely the density inversion par- 
ameter R. Figure 4 displays the histories of the volu- 
metric melted fraction (i/*) and the average dimen- 
sionless heat transfer rates at the hot and cold walls 
(ph and &‘) of the enclosure for S&t = 0.051 
(F,, = 4“C), SC = 0.25, Rcr = IO’, and p = 0.5 with 
varying oscillation amplitude of the hot wall tem- 
perature. The local and average dimensionless heat 
transfer rates through the hot and cold walls of the 
enclosure are. respectively, defined as 

Q=_fN _ y,H 
h 2.x , / k(T,,-T,) 

@a) 

and 

From an overview of the figure, one can notice that the 
average heat transfer rate at the hot wail & exhibits a 
steady cyclic variation first. the melted fraction V* 
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FIG. 4. Effect of oscillation amplitude on temporal variations 
of melted fraction of ice and heat transfer rates at the vertical 

walls for See = 0.05 1. 

second, and the average heat transfer rate through 
the cold wall ec last. The damping effects of the 
phase change process on the penetration of the temp- 
orally cyclic perturbation on the hot wall across the 
enclosure can be readily inferred from the delay of Q= 
reaching the steady periodic oscillation with much 
smaller amplitude than that of &, as shown in Fig. 4. 
The increase of the amplitude of the imposed surface 
temperature oscillation appears to induce increasingly 
oscillatory behavior of the heat transfer rates and the 
melted fraction. In addition, the increase of the forcing 
oscillation amplitude results in a marked decrease of 
the local minimum values of the melted fraction and 
the average heat transfer rates during the steady per- 
iodic melting regime. From a closer examination of 
Fig. 4(b), it can be detected that the cyclic variation 
of the heat transfer rate at the hot wall for A = 1 .O as 
compared with those under the lower amplitudes 
A < 0.75 displays a rather peculiar crest shape featur- 
ing a local minimum at the end of the first quarter 
of the cycle as shown in the inset of the figure. The 
occurrence of such peculiarity may be rationalized by 
examining evolution of the local heat transfer profile 
on the hot wall over the corresponding time interval, 
as plotted in Fig. 5 for A = 1 .O. The curves presented 
in Fig. 5 clearly demonstrate the non-monotonic vari- 
ation in local heat transfer rate at the hot wall with 
position as well as with time. The local heat transfer 

Qb 
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Ra=lO* 
ste=0.051 
sc=o.zs 
A=l.O 
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2: . 

FIG. 5. Variations of local heat transfer profile at the hot 
wall. 

distribution features a gradual decline from the 
bottom of the surface reaching a local minimum and 
thereupon exhibits a sharp rise up to the top end. 
Also, the heat transfer profiles show a similar vari- 
ation trend with time, as indicated by shifting upward 
till the end of the first quarter of the cycle and then 
downward of the location where the local minimum 
heat transfer arises. This non-monotonic temporal 
behavior as shall be demonstrated in Fig. 6 is primarily 
due to growing and decaying of a clockwise secondary 
recirculation adjacent to the hot wall, related to den- 
sity inversion phenomenon, in response to the sinu- 
soidal modulation of the hot wall temperature. 

The periodic progression of the buoyant Row field 
in the water region and the temperature distribution 
inside the enclosure during the steady periodic melting 
regime for Be = 0.051, SC = 0.25, Ra = 10h,p = 0.5, 
and A = 1.0 is illustrated by the contour plots of 
streamlines (left) and isotherms (right) in Fig. 6. In 
the contour plots, the hot wall of the enclosure is on 
the left, and the ice-water interface is traced by a dot 
dashed line. In addition, the isotherm contour for the 
maximum density, 6 = R, is denoted by a dashed line, 
if it exists. Having the density maximum located near 
the hot wall during the first and second quarter of 
the cycle, the buoyancy-driven flow field in the water 
region, as displayed in Figs. 6(a)-(e), evolves from a 
convective inversion flow pattern at the beginning 
of the cycle into one featuring a dominant counter- 
clockwise recirculation demarcated along the density- 
extreme isotherm with a contra-rotating secondary 
eddy, growing and decaying in accordance with the 
sinusoidal rise and fall of the hot wall temperature. 
With further decline of the hot wall temperature below 
4°C through the third quarter of the cycle, the counter- 
clockwise melt flow appears to be gradually impeded 
due to the growing contra-rotating eddy near the hot 
wall so that a bicellular flow pattern of nearly equal 
strength arises at the end the third quarter as shown 
in Fig. 6(g). Moreover, from the isotherms in Fig. 
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FIG. 6. Cyclic development of Aow structure (left) and temperature distribution (right) during steady 
periodic melting process of ice for S@ = 0.051. Sc = 0.25, p = 0.5. A = I.0 and Rn = 106. 
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6(f), a pocket of warmer water at temperature higher 
than the hot wall can be detected staying in the bottom 

region of the melt. At the end of the third quarter, the 

melt zone is virtually at a temperature higher than the 
hot wall (Fig. 6(g)), thus rendering a back heat flow 
from the melt zone toward the hot wall of the enclos- 
ure, as indicated by the slightly negative values of & 
in Fig. 4 at the corresponding instant of time. Then, 
as the hot wall temperature rises back to 4°C through 
the fourth quarter, the streamline pattern as well as the 
isotherm distribution evolves back to that observed at 
the beginning of the cycle. The above-elaborated 
cyclic variation of the buoyant convection in the melt 
region flow is in the sense of convection opposite to 
that of the pure tin observed in ref. [93, a clear indi- 
cation of the convective inversion due to the density 
inversion phenomenon in the melt. 

For higher Ste = 0.101 (F,, = 8”C), the increase of 
the imposed oscillation amplitude of the hot wall tem- 

perature exerts an influence somewhat opposite to 
that found for Ste = 0.051 on the heat transfer and 
the melted fraction of ice in the enclosure. As revealed 
in Fig. 7 for Ste = 0.101, Ra = 106, SC = 0.25, and 
p = 0.5, the imposed time-periodic oscillatory hot- 
surface temperature with increasing amplitude tends 

to yield great enhancement of the melted fraction and 
the heat transfer rates, as compared with that under 

@‘o/p 
FIG. 7. Effect of oscillation amplitude on temporal variation 
of melted fraction and heat transfer rates at the vertical walls 

for Sre = 0.101 

static condition (A = 0). This clearly reflects the feasi- 
bility of enhancing heat transfer during the melting 
process of ice through the temporally sinusoidal per- 

turbation on the hot wall temperature, which was not 
found for tin [9]. Further scrutiny of the heat transfer 
histories at the hot wall for Ste = 0.101 presented in 
Fig. 7(b) reveals a more complex variation with time 
than those of Ste = 0.051 in Fig. 4(b). This is due 

to a further pronounced temporally changing flow 
structure related to density inversion. 

Figure 8 exemplifies the cyclic evolution of the flow 

structure and the temperature distribution at the 
instants of time denoted in the inset of Fig. 7(b) 
during the steady periodic melting regime of ice for 

Ste = 0.101. The cycle starts with a flow pattern domi- 
nated by a counterclockwise circulation near the ice 
front, which is then drastically suppressed by the 

rapidly intensified clockwise cell near the hot wall in 
response to the rising hot wall temperature through 
the first quarter of the cycle. At the end of the first 

quarter, as shown in Fig. 8(c), the flow structure as 
well as the temperature field in the melt zone is 
reverted to the one controlled by the clockwise recir- 
culating flow. Driven by the sinusoidal drop of the 
hot wall temperature through the second quarter, the 
dominance of the clockwise flow structure is then 
fading away progressively in the presence of growing 
contra-rotating eddy adjacent to the ice front (see 
Figs. 8(d) and (e)). With continuing decline of the hot 

wall temperature below 8°C the flow field in the melt 
exhibits a drastic change of recirculation pattern ; as 
illustrated in Fig. 8(f) the counterclockwise recir- 
culation near the ice front becomes the dominant flow 
structure in the melt region. Further from the isotherm 
of Fig. 8(f), a pocket of warmer melt at temperature 
higher than the hot wall can be discerned floating in 
the top left corner of the enclosure, indicative of a 
back heat flow phenomenon there. Through the first 
half of the third quarter of cycle, Figs. 8(f)-(h), the 
occurrence of the local back heat flow continues but 
shifts downward to the bottom, a pocket of the 
warmer melt settling down to the floor of the enclos- 
ure. At the end of the third quarter, resembling the 

case of Ste = 0.05 1 in Fig. 6, a bicellular flow structure 
prevails in the melt region. Then, during the final 
quarter of the cycle, the flow structure displays 
another cycle of growing and decaying of a counter- 
clockwise secondary eddy at the bottom left corner of 
the melt zone. 

In Fig. 9, the periodic mean values and the induced 

oscillation amplitudes of the melted fraction of ice 
and the heat transfer rates at the vertical walls during 

the steady period melting regime are plotted against 
the forcing oscillation amplitude of the hot-wall tem- 
perature. Note that the induced oscillation amplitude 
presented in Fig. 9 is evaluated as half of the difference 
between the maximum and minimum values of the 
oscillatory quantity of interest over a cycle of the steady 
periodic melting process. In conformity with the 
aforementioned, the effects of the forcing oscillation 
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FE. 8. Cyclic progression of flow structure and temperature distribution during the steady periodic melting 
process of ice for Ste = 0.101. 
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amplitude are a strong function of the Stefan number 
related to density anomaly of water. From Fig. 9 
it can be seen that the periodic mean value of 
or, increases with the imposed oscillation amplitude 
for Ste = 0.101, while the opposite occurs for 
Ste = 0.051. Furthermore, a quasi-linear amplitude 
response to the increasing temperature oscillation 
amplitude imposed on the hot wall can be observed 
for the heat transfer rates through the vertical walls 
as well as the melted fraction of ice. The induced 

-----c________ 

=0.051 dashed 
=O.lOl solid Ii 

FIG. 8.-Continued. 

oscillation amplitudes of &, oC and V* appear to be 
further amplified for Ste = 0.101 in comparison with 
those of Ste = 0.051. 

Eflect of time period 
The increase of the time period of the sinusoidal 

hot wall temperature tends to delay the onset of the 
steady periodic melting regime but induces marked 
amplification of the induced oscillation amplitudes of 
both the melted fraction and heat transfer rate at the 

- 0.5 
6 Sc=O.25 Ste=O.OSl dashed lino 

A=l.O Ste=O.lOl solid line _ 

FIG. 9. Dependence of periodic mean values and induced P 
oscillation amplitudes of melted fraction and heat transfer 
rates at the vertical walls on the imposed oscillation ampli- 

FIG. 10. Effect of time period on the average mean values 
and induced oscillation amplitudes of melted fraction of ice 

tude. and heat transfer rates during steady periodic melting regime. 
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cold wall. Adversely, the increase of the time period 
results in slightly lower oscillation amplitude of heat 
transfer at the hot wall. The effects of varying time 
period become further pronounced at Ste = 0.101. 
Figure IO further quantifies the foregoing effects of 
the time period. The periodic mean value of the melted 
fraction shows a decreasing trend with increasing time 
period of the sinusoidal hot wall temperature. More- 
over, the periodic-averaged heat transfer rate at the 
hot wall appears to be rather insensitive to the vari- 
ation of the time period. 

l@ct of RuyleQh number 

The increase of Ra for fixed values of the other 
parameters greatly amplifies the oscillatory behavior 
of heat transfer rates at the vertical walls, as indicated 
by the increasing induced oscillation amplitudes of 
the heat transfer rates as well as the melted fraction 
of ice shown in Fig. 1 I. Relatively, the melted fraction 
responds to the increasing Ra with a slightly higher- 
amplitude oscillation. Moreover, the periodic mean 
values of V* and & display a drastic increase with 
the increase of Ra, further indication of the dominant 
role of natural convection in the melting process. 
Another interesting trend that can be detected in Fig. 
11 is that the dependence of the periodic mean value 
of V* on SW appears to diminish at high Ra = 1Oh. 

&@ct qf’suhcooling parumeter 

Next, the effect of the subcooling parameter is con- 
sidered. Lower subcooiing, as expected, leads to 
great enhancement of the melted fraction of ice. Quan- 
titatively, as illustrated in Fig. 12, the increase of SC 
causes great reduction in the periodic mean melted 
fraction, but exerts a relatively minute influence on the 
induced oscillation amplitude as well as the periodic 
mean value of the heat transfer rate. Moreover, an 
effect of SC resembling that found in ref. [9] for pure 
tin on the heat transfer rate through the cold wall is 
detected for the melting process of ice as well. Fol- 
lowing a certain period of the melting process, the 
influence of SC on Q, is reversed that lower SC results 
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FIG. 11. Effect of Ra on mean values and oscillation ampli- 

tudes of melted fraction and heat transfer rates. 

Ste=O.OSt doshed line 

SC 

FIG. 12. Influence of subcooling parameter on mean values 
and oscillation amplitudes of melted fraction and heat trans- 

fer rates. 

in higher-amplitude oscillation of &, as presented in 
Fig. 12. Above all, the foregoing effect of the sub- 
cooling parameter on the heat transfer rates and the 
melted fraction of ice exhibits a dependence on the 
Stefan number as well. 

Correlation 

Finally, correlation for the results of the periodic 
mean values and the oscillation amplitudes of the 
melted fraction of ice and the heat transfer rates dur- 
ing the steady periodic melting regime for Ste = 0.05 I 
and 0.101 has been generated via the least square 
regression analysis. For Ste = 0.051, A = 0.25 - 
1.0, p = 0.25 - 2.0, Ru = IO’ - 10h, and SC = 
0.25 - 1.50: 

(10a) 

with the maximum and average deviation of 6.43 
and 1.32%, respectively ; and 

Qh = o.l14A-“.“541) o.0~hRu~.~‘5Sc”.“” (,Ob) 

with the maximum and average deviation of 4.58 and 
1.72%, respectively. 

(1Oc) 

with the maximum and average deviation of 5.26 and 
1.54%. respectively ; and 

A q.h = 0.614A0 xs5p-” ‘I’ 
i 

lfRaoo7’ 
Ra_0_07, _o,256 

with the maximum and average deviation of 7.62 and 
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2.78%, respectively; and 

A,, = 0.031 iI :,‘,::,,) (&) 

with the maximum and average deviation of 1.81 and 
0.52%, respectively. For Ste = 0.101, A = 0.25 - 
1.0, p = 0.25 - 1.0, Ra = 104- 106, and SC = 
0.25 - 1.50: 

(114 

with the maximum and average deviation of 4.52 and 
1.54%, respectively ; and 

Qh = 0.197A0.332p0.005~a0.283~C0.056 (ltb) 

with the maximum and average deviations of 3.24 and 
1.04%, respectively. 

A,. = 7.5674’ xsspo.640 
1 +Ra”.4’4 

2753 + RaO 620 

(Ilc) 
with the maximum and average deviation of 3.93 and 
1.76%, respectively ; and 

A9.h = 0.39~A0~9hb~-0~073~n0.250Sc0.006 (1 Id) 

with the maximum and average deviation of 2.62 and 
1.14%, respectively ; and 

A,, = 23.5 (G)(G) 
1 -k- Ra'.0s4 

x 1167600+ Ra’,066 

with the maximum and average deviation of 0.05 and 
O.Ol%, respectively. 

CONCLUDING REMARKS 

A numerical study has been carried out to investi- 
gate the natural-convection-dominated melting process 
of ice from a vertical wall with time-dependent sinu- 
soidal temperature perturbation inside a square en- 
closure. Similar to the findings in ref. [9] for pure tin 
as PCM, a steady-periodic melting regime of ice at 
the frequency of the imposed time-periodic perturba- 
tion on the surface temperature emerges after a tran- 
sient oscillatory melting process. The synchronous 
response of the melting process of ice to the time- 
periodic temperature perturbation is strongly affected 
by the density inversion phenomenon of water near 
4°C. In contrast to the melting process of the pure 
tin considered in ref. 191, results from the present 

simulations demonstrate that the time-periodic tem- 
perature perturbation imposed on the vertical hot wall 
in conjunction with the density inversion effect of 
water can be a viable means for controlling melting 
heat transfer in an ice-filled enclosure. For Ste = 0.101 
( inr, = 8°C) the increase ofthe amplitude of the forcing 
oscillatory hot-wall temperature greatly enhances the 
melting heat transfer across the enclosures as well as 
the melted fraction of ice during the steady periodic 
melting regime. On the other hand, an adverse effect 
for the increasing oscillation amplitude of hot wall 
temperature is found for Ste = 0.051 (F,, = 4°C). 
Moreover, the heat transfer rates through the vertical 
walls as well as the melted fraction of ice during the 
steady periodic melting regime are strongly influenced 
by the Rayleigh number, further indicating the pre- 
dominant role of the buoyant flow in the melting 
process of ice. The higher subcooling parameter leads 
to greatly reduced periodic mean melted fraction of ice 
but with a higher-amplitude oscillation. The periodic 
mean value of the heat transfer rate is rather insen- 
sitive to the variation of the time period of the forcing 
wall temperature oscillation and of the subcooling 
parameter. 
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